REVIEW PAPER
Magnetoledtherapy in comprehensive pediatric rehabilitation
 
More details
Hide details
1
The John Paul II Pediatric Center, Early Intervention Unit in Sosnowiec, Poland
 
2
Department of Rehabilitation and Physical Medicine, Division of Physiotherapy, Medical University of Lodz, Poland
 
 
Submission date: 2012-02-20
 
 
Acceptance date: 2012-06-15
 
 
Publication date: 2020-04-10
 
 
Corresponding author
Marta Woldańska-Okońska   

Department of Rehabilitation and Physical Medicine, Division of Physiotherapy, Medical University of Lodz, Hallera 1, 91-647 Łódź, Poland. Tel.: +48 603 377 610; fax: +48 426 393 064.
 
 
Pol. Ann. Med. 2012;19(2):163-169
 
KEYWORDS
ABSTRACT
Introduction:
LED light therapy with magnetostimulation (magnetoledtherapy) has a vast range of applications in the treatment of neurological, rheumatic and orthopedic illnesses. In some cases it serves as an alternative procedure to pharmacological treatment, in particular to nonsteroidal anti-inflammatory drugs.

Aim:
The aim of this study was to discuss the use of magnetoledtherapy in the rehabilitation of children.

Material and methods:
This article is a review of selected literature and other available source materials.

Discussion:
Due to biological hysteresis, therapeutic outcomes of magnetoledtherapy appear later than in the case of other physical therapy methods; they last longer, even up to several months after the exposure, thus leading to more beneficial treatment effects. Therapeutic methods available for very young people are limited due to various contraindications. When exposure conditions are carefully considered and accounted for, magnetoledtherapy can be applied even in infants, serving as a beneficial complement to kinesiotherapy. Children willingly participate in such treatment because magnetoledtherapy produces few side effects and has a positive effect on a patient’s well-being following the application. Selected indications for the use of this method in children include neuralgias, juvenile rheumatoid arthritis, collagenoses, aseptic necrosis, osteoporosis, tendinitis, tendovaginitis, bursitis, injuries without a disruption in tissue continuity including sprains, bruises and fractures, improvement in the quality and time of healing, burns, effects of exposure to sunlight and laser light, neonatal physiological jaundice, dermatoses including dermatitises, acne, herpes, vitiligo, psoriasis, central nervous system lesions, dental periapical lesions, cerebral palsy, peripheral nerve lesions, especially perinatal brachial plexus palsy, polyneuropathies, amyotrophic lateral sclerosis, spinal muscular atrophy, muscular dystrophies, congenital bone deformations, neuroses, sleep disorders, stress, Attention Deficit Hyperactivity Disorder (ADHD), speech impairment therapy and therapy for children with Down’s syndrome. Therefore, this therapy is widely applicable. In the treatment of children, it is indispensible to strictly follow application parameters and observe specifications concerning the size of the area that is exposed to treatment.

Conclusions:
Magnetoledtherapy is a valuable complement to the comprehensive rehabilitation of children and should be recommended for a wider application.

CONFLICT OF INTEREST
None declared.
 
REFERENCES (35)
1.
Banaszkiewicz W, Drobnik M, Straburzyńska-Lupa A, Straburzyński G. Zachowanie się gospodarki wodno-elektrolitowej pod wpływem łącznego stosowania pulsującego pola magnetycznego o niskiej częstotliwości i monochromatycznego promieniowania podczerwonego u zwierząt doświadczalnych [The influence of a combined application of low-frequency impulse magnetic field and monochromatic infrared radiation on the water–electrolyte balance in experimental animals]. Baln Pol. 1998;40(3–4):49–53 [in Polish].
 
2.
Bauer A, Wiecheć M. Przewodnik metodyczny po wybranych zabiegach fizykalnych [A Methodological Guide for Selected Physical Therapy Procedures] Ostrowiec Świętokrzyski: Markmed Rehabilitacja; 2005:289–290 [in Polish].
 
3.
Boixeda P, Calvo M, Bagazgoitia L. Recientes avances en laser y otras tecnologias [Recent advances in laser therapy and other technologies]. Actas Dermosifiliogr. 2008;1999(4):262–268.
 
4.
Byrnes KR, Barna L, Chenault VM, Waynant RW, Ilev IK, Longo L, et al. Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes. Photomed Laser Surg. 2004;22(4):281–290.
 
5.
Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, et al. Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med. 2005;36(3):171–185.
 
6.
Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ. Low power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med. 2005;37(2):161–171.
 
7.
Cartier H, Le Pillouer-Prost A, Grognard C. Light-emitting diodes (LED). Ann Dermatol Venereol. 2009;136(suppl 6):351–358.
 
8.
Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MT, Henry MM, et al. Clinical and experimental applications of NIR–LED photobiomodulation. Photomed Laser Surg. 2006;24(2):121–128.
 
9.
de Sousa AP, de Aguiar Valenc-a Neto AD, Marchionni AM, de Araú jo Ramos M, dos Reis Junior JA, Pereira MC, et al. Effect of LED phototherapy (l 700 720 nm) on TGF-b expression during wound healing: an immunohistochemical study in a rodent model. Photomed Laser Surg. 2011;29(9):605–611.
 
10.
Fiorio F, Silveira L, Munin E, de Lima CJ, Fernandes KP, Mesquita-Ferrari RA, et al. Effect of incoherent LED radiation on third-degree burning wounds in rats. J Cosmet Laser Ther. 2011;13(6):315–322.
 
11.
Gold MH. Light-emitting diode. Curr Probl Dermatol. 2011;42:173–180.
 
12.
Kasprzak WP, Straburzyńska-Lupa A, Straburzyński G. Pulsujące pole magnetyczne skojarzone z promieniowaniem laserowym podczerwieni w leczeniu owrzodzeń żylakowatych podudzi [Impulse magnetic field combined with laser infrared radiation in the treatment of venous low extremities ulcers]. Balneol Pol. 1992;36(1–4):68–74 [in Polish].
 
13.
Kasprzak WP, Straburzyńska-Lupa A, Straburzyński G, Kostrzewski J. Wyniki leczniczego stosowania pulsującego pola magnetycznego i laserowego promieniowania podczerwonego w zaburzeniach ukrwienia kończyn dolnych [Treatment outcomes of impulse magnetic field and laser infrared radiation in lower extremities blood supply disorders]. Balneol Pol. 1992;36(1–4):75–93 [in Polish].
 
14.
Krukowska J, Woldańska-Okońska M, Jankowska K, Kwiecień-Czerwieniec I, Czernicki J. Analgesic efficacy of magnetoledtherapy in patients with low back pain syndromes. Wiad Lek. 2010;63(4):265–275 [in Polish].
 
15.
McDaniel DH, Weiss RA, Geronemus RG, Mazur C, Wilson S, Weiss MA. Varying ratios of wavelengths in dual wavelength LED photomodulation alters gene expression profiles in human skin fibroblasts. Lasers Surg Med. 2010;42(6):540–545.
 
16.
Nakagawa K. Magnetic field deficiency syndrome and magnetic treatment [Translated from: Jpn J Med. 1976;2745]. Available from: http://www.greenmagnetfoundati....
 
17.
Nowe technologie NASA [NASA New Technologies]. PAP [in Polish]. Available from: http://odkrywcy.pl/kat,111398,....
 
18.
Pecyna M. Wolnozmienne pola magnetyczne w badaniach psychofizjologicznych [Slow-Changing Magnetic Field in Psychophysiological Examinations]. Warszawa: Z˙ ak; 2001 [in Polish].
 
19.
Roberts S. LED light therapy. Available from: http://heelspurs.com/led.html#...; 2008.
 
20.
Robertson V, Ward A, Low J, Reed A. Fizykoterapia. Aspekty kliniczne i biofizyczne [Physiotherapy. Clinical and Biophysical Aspects]. Wrocław: Elsevier; 2009 [479–522, in Polish].
 
21.
Sadowska L. Współczesne techniki terapii osób z zespołem Down’a w świetle odpowiedzialności medycznej [Modern therapeutic techniques for patients with Down syndrome in the context of medical responsibility]. In: Proceedings of the Scientific Conference on the Use of Magnetic Fields and Light Energy in Medicine. Warszawa; 2006:17–18 [in Polish].
 
22.
Santos NR, dos Santos JN, Sobrinho JB, Ramalho LM, Carvalho CM, Soares LG, et al. Effects of laser photobiomodulation on cutaneous wounds treated with mitomycin C: a histomorphometric and histological study in a rodent model. Photomed Laser Surg. 2010;28(1):81–90.
 
23.
Science of acne. In the depth: intense pulsed light (IPL). Available from: http://scienceofacne.com/in-de....
 
24.
Serafim KG, Ramos SD, de Lima FM, Carandina M, Ferrari O, Dias IF, et al. Effects of 940 nm light-emitting diode (led) on sciatic nerve regeneration in rats. Lasers Med Sci. 2011;27(1):113–119.
 
25.
Sieroń A, Pasek J, Mucha R. Światło w rehabilitacji [Light in rehabilitation]. Rehabil Prakt. 2006;3:20–24 [in Polish].
 
26.
Sieroń A, Pasek J, Mucha R. Pole magnetyczne i energia światła w medycynie i rehabilitacji – magnetoledoterapia [Magnetic field and light energy in medicine and rehabilitation – magnetoledtherapy]. Balneol Pol. 2007;49(1):1–7 [in Polish].
 
27.
Sommer AP, Oron U, Kajander EO, Mester AR. Stressed cells survive better with light. J Proteome Res. 2002;1(5):475.
 
28.
Sommer AP, Oron U, Pretorius AM, McKay DS, Ciftcioglu N, Mester AR, et al. A preliminary investigation into light-modulated replication of nanobacteria and heart disease. J Clin Laser Med Surg. 2003;21(4):231–235.
 
29.
Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT. Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA’s light-emitting diode array system. J Clin Laser Med Surg. 2001;19(1):29–33.
 
30.
Subramanian S, Sankar MJ, Deorari AK, Velpandian T, Kannan P, Prakash GV, et al. Evaluation of phototherapy devices used for neonatal hyperbilirubinemia. Indian Pediatr. 2010;48(9):689–696.
 
31.
Volpato LE, de Oliveira RC, Espinosa MM, Bagnato VS, Machado MA. Viability of fibroblasts cultured under nutritional stress irradiated with red laser, infrared laser, and red light-emitting diode. J Biomed Opt. 2011;16(7):075004. http://dx.doi.org/10.1117/1.36....
 
32.
Whelan HT, Connelly JF, Hodgson BD, Barbeau L, Post AC, Bullard G, et al. NASA light-emitting diodes for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg. 2002;20(6):319–324.
 
33.
Whelan HT, Smits RL, Buchman EV, Whelan NT, Turner SG, Margolis DA, et al. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg. 2001;19(6):305–314.
 
34.
Woldańska-Okońska M. Wpływ pól magnetycznych niskiej cze˛stotliwości na wydzielanie hormonów u mężczyzn [The effect of low-frequency magnetic fields on hormone excretion in males]. Folia Medica Lodziensia. 2008;35(1): [A habilitation dissertation, in Polish].
 
35.
Wong-Riley MT, Liang HL, Eells JT, Chance B, Henry MM, Buchmann E, et al. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins. Role of cytochrome C oxidase. J Biol Chem. 2005;280(6):4761–4771.
 
Journals System - logo
Scroll to top