REVIEW PAPER
The effects of bovine milk fat on human health
 
More details
Hide details
1
Department of Cattle Breeding and Milk Quality Evaluation, University of Warmia and Mazury in Olsztyn, Poland
 
2
Department of Rehabilitation, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Poland
 
3
Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Poland
 
4
Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Poland
 
5
Vilnius University Hospital, Santariskiu Klinikos, Lithuania
 
 
Submission date: 2012-05-30
 
 
Acceptance date: 2012-07-17
 
 
Publication date: 2020-04-10
 
 
Corresponding author
Jan Miciński   

Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 5/150, 10-719 Olsztyn, Poland. Tel.: +48 523 38 64; fax: +4889 523 44 13.
 
 
Pol. Ann. Med. 2012;19(2):170-175
 
KEYWORDS
ABSTRACT
Introduction:
Recent years have witnessed a growing interest in the nutritional value and health benefits of food products of animal origin. Numerous research studies have been undertaken to evaluate the effects of bovine milk, a key dietary component, on human health. Fat is one of the most important components in bovine milk, and its content ranges from 2.8% to 8.1%, subject to the breed of cattle, nutritional aspects, individual characteristics, lactation period, milk production hygiene and season.

Aim:
The aim of this study was to review the latest literature concerning the health effects of components found in bovine milk fat.

Material and methods:
This paper is a literature review, and it analyzes the composition of bovine milk fat and its effects on human health. The available sources were grouped thematically, and an attempt was made to characterize various milk fat components and their effects on human health.

Discussion:
The unique nutritional value of bovine milk can be attributed to the presence of short-chain fatty acids and medium-chain fatty acids which are important sources of energy for the muscles, heart, liver, kidneys, blood platelets and nervous system. They do not pose an obesity risk; they prevent ulcerative colitis, cancer, atherosclerosis and hypertension; they have anti-inflammatory and antibacterial effects, and they boost natural immunity. Milk contains cholesterol, a lipid derivative which stabilizes and stiffens cell membranes, builds the cell cytoskeleton, protects nerve fibers and acts as a precursor of steroid hormones, bile acids and vitamin D 3 . Bovine milk lipids do not exert hypercholesterolemic or atherogenic effects in the human body.

Conclusions:
A growing tendency to replace animal fats, mainly milk fat, with vegetable fats is a matter of concern.

CONFLICT OF INTEREST
None declared.
REFERENCES (69)
1.
Alessandri JM, Guesnet P, Vancassel S, Astorg P, Denis I, Langelier B, et al. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life. Reprod Nutr Dev. 2004;44(6):509–538.
 
2.
Arao K, Yotsumoto H, Han SY, Nagao K, Yanagita T. The 9cis, 11trans, 13cis isomer of conjugated linolenic acid reduces apoliprotein B100 secretion and triacylglycerol synthesis in HepG2 cells. Biosci Biotechnol Biochem. 2004;68(12):2643–2645.
 
3.
Barłowska J, Litwińczuk A. Właściwości funkcjonalne białek mleka krowiego [Functional properties of bovine milk proteins]. Przegl Hod. 2008;76(5):26–28.
 
4.
Barłowska J, Litwińczuk Z. Właściwości odżywcze i prozdrowotne tłuszczu mleka [Nutritional and health beneficial properties of milk fat]. Med Wet. 2009;65(3):171–174.
 
5.
Bernatowicz E, Reklewska B. Bioaktywne składniki białkowej frakcji mleka [Bioactive components of milk protein fraction]. Przegl Hod. 2003;71(3):1–10.
 
6.
Bjerregaard P, Young TK, Hegele RA. Low incidence of cardiovascular disease among the inuit – what is the evidence?. Atherosclerosis. 2003;166(2):351–357.
 
7.
Brzóska F, Gąsior R, Sala K, Zyzak W. Wpływ soli wapniowych kwasów tłuszczowych na wydajność i składniki mleka krów [The influence of calcium salts of fatty acids on productivity and composition of cow’s milk]. Rocz Nauk Zootech. 1999;26(3):143–157.
 
8.
Cichosz G. Prozdrowotne właściwości tłuszczu mlekowego [Health beneficial properties of milk fat]. Przegl Mlecz. 2007;5:4–8.
 
9.
Cichosz G. Oleje roślinne a zagrożenie nowotworami [Plant oils and tumour threat]. Przegl Mlecz. 2008;6:4–12.
 
10.
Cichosz G, Czeczot H. Rzekomo zdrowe tłuszcze roślinne [Spuriously healthy plant fats]. Pol Merk Lek. 2011;31(184):239–243.
 
11.
Clément M, Tremblay J, Lange M, Thibodeau J, Belhumeur P. Whey derived free fatty acids suppress the germination of Candida albicans in vitro. FEMS Yeast Res. 2007;7(2):276–285.
 
12.
Clément M, Tremblay J, Lange M, Thibodeau J, Belhumeur P. Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity. J Dairy Sci. 2008;91(7):2535–2544.
 
13.
Coakley M, Banni S, Johnson MC, Mills S, Devery R, Fitzgerald G, et al. Inhibitory effect of conjugated alpha-linolenic acid from bifidobacteria of intestinal origin on SW480 cancer cells. Lipids. 2008;44(3):249–256.
 
14.
Connor WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr. 2000;71(1):171–175.
 
15.
Das UN. Essential fatty acids: biochemistry, physiology and pathology. Biotech J. 2006;1(4):420–439.
 
16.
Destaillats F, Trottier JP, Galvez JM, Angers P. Analysis of alpha-linolenic acid biohydrogenation intermediates in milk fat with emphasis on conjugated linolenic acids. J Dairy Sci. 2005;88(9):3231–3239.
 
17.
Dupertuis YM, Meguid MM, Pichard C. Colon cancer therapy: new perspectives of nutritional manipulations using polyunsaturated fatty acids. Curr Opin Clin Nutr Metab Care. 2007;10(4):427–432.
 
18.
Dymnicka M, Klupczyński J, Łozicki A, Miciński J, Strzetelski J. Polyunsaturated fatty acids in M. longissimus thoracis of fattening bulls fed silage of grass or maize. J Anim Feed Sci. 2004;13(suppl 2):101–104.
 
19.
German JB, Dillard CJ. Composition, structure and absorption of milk lipids: a source of energy, fat-soluble nutrients and bioactive molecules. Crit Rev Food Sci Nutr. 2006;46(1):57–92.
 
20.
Górska A, Mróz B, Rymuza K, Dębska M. Zmiany w zawartości białka i tłuszczu w mleku krów czarno-białych i czerwono-białych w zależności od stadium laktacji i pory roku [Changes in protein and fat content in the milk of black and white and red and white cows depending on lactation stage and season of the year]. Rocz Nauk PTZ. 2006;2(1):113–119.
 
21.
Griinari JM, Bauman DE. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Yurawecz MP, Mossoba MM, Kramer JK, Pariza MW, Nelson GJ, eds. Advances in Conjugated Linoleic Acid. Champaign: AOCS Press; 1999:180–200.
 
22.
Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KV, Bauman DE. Conjugated linoleic acid is synthesized endo- genously in lactating dairy cows by delta(9)-desaturase. J Nutr. 2000;130(9):2285–2291.
 
23.
Hamilton JA, Hillard CJ, Spector AA, Watkins PA. Brain uptake and utilization of fatty acids, lipids and lipoproteins: applications to neurological disorders. J Mol Neurosci. 2007;33(1):2–11.
 
24.
Hennessy AA, Ross RP, Devery R, Stanton C. The health promoting properties of the conjugated isomers of a-linolenic acid. Lipids. 2011;46(2):105–119.
 
25.
Innis SM. Perinatal biochemistry and physiology of long- chain polyunsaturated fatty acids. J Pediatr. 2003;143(suppl 1):1–8.
 
26.
Innis SM. Polyunsaturated fatty acids in human milk: an essential role in infant development. Adv Exp Med Biol. 2004;554:27–43.
 
27.
Innis SM. Dietary (n-3) fatty acids and brain development. J Nutr. 2007;137(4):855–859.
 
28.
Innis SM. Human milk: maternal dietary lipids and infant development. Proc Nutr Soc. 2007;66(3):397–404.
 
29.
Isaacs CE. Human milk inactivates pathogens individually, additively, and synergistically. J Nutr. 2005;135(5):1286–1288.
 
30.
Jensen RG. The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci. 2002;85(2):295–350.
 
31.
Jensen RG, Newburg DS. Bovine milk lipids. In: Jensen RG, ed. Handbook of Milk Composition. London: Academic Press; 1995:543–575.
 
32.
Karłowicz-Bodalska K, Bodalski T. Nienasycone kwasy tłuszczowe, ich właściwości biologiczne i znaczenie w lecznictwie [The biological properties of unsaturated fatty acids and their role in therapy]. Poste˛py Fitoter. 2007;1:46–56.
 
33.
Kolanowski W. Długołań cuchowe wielonienasycone kwasy tłuszczowe omega-3, znaczenie zdrowotne w obniżaniu ryzyka chorób cywilizacyjnych [Long chain polyunsaturated omega-3 fatty acids and their role in reducing the risk of lifestyle related diseases]. Bromat Chem Toksykol. 2007;40(3):229–237.
 
34.
Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79(6):935–945.
 
35.
Lindmark-Månsson H, Åkesson B. Antioxidative factors in milk. Br J Nutr. 2000;84(suppl 1):103–110.
 
36.
Lindmark-Månsson H. Den svenska mejerimjölkens sammansättning 2001. Sammanfattning av analysresultat. Rapport nr 7025-P [Composition of Swedish dairy milk 2001. Report no. 7025-P]. Swedish Dairy Association, 2003 [in Swedish].
 
37.
Lock AL, Bauman DE. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids. 2004;39(12):1197–1206. http://dx.doi.org/10.1007/s117....
 
38.
Ma QL, Teter B, Ubeda OJ, Morihara T, Dhoot D, Nyby MD, et al. Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s disease (AD): relevance to AD prevention. J Neurosci. 2007;27(52):14299–14307.
 
39.
Mac Gibbon AH, Taylor MW. Composition and structure of bovine milk lipids. In: Fox PF, Sweeney PL, eds. Advanced Dairy Chemistry. New York: Springer; 2006:1–42.
 
40.
Matwijczuk A, Król J. Profil kwasów tłuszczowych w mleku krów różnych ras w okresie wiosenno-letnim [Fatty acid profile in milk from cows of various breeds over spring-summer feeding season]. Przegl Hod. 2009;7:3–6.
 
41.
McGuire MA, Bauman DE. Milk biosynthesis and secretion. In: Roginsky H, Fuquay JW, Fox PF, eds. Encyclopedia of Dairy Science. New York: Academic Press; 2003:1828–1834.
 
42.
Mills S, Ross RP, Hill C, Fitzgerald GF, Stanton C. Milk intelligence: mining milk for bioactive substances associated with human health. Int Dairy J. 2011;21(6):377–401.
 
43.
Nagao K, Yanagita T. Conjugated fatty acids in food and their health benefits. J Biosci Bioeng. 2005;100(2):152–157.
 
44.
Nałęcz-Tarwacka T, Grodzki H, Kuczyńska B, Zdziarski K. Wpływ dawki pokarmowej na zawartość składników frakcji tłuszczowej mleka krów [The effect of food ration on the content of fat fraction components in cow’s milk]. Med Wet. 2009;65(7):487–491.
 
45.
Parodi PW. Milk fat in human nutrition. Aust J Dairy Technol. 2004;59(1):3–59.
 
46.
Pełczyńska E. Białka mleka jako czynnik alergenny [Milk protein as an allergen]. Med Wet. 1996;52(12):752–754.
 
47.
Petrone G, Conte MP, Longhi C, di Santo S, Superti F, Ammendolia MG, et al. Natural milk fatty acids affect survival and invasiveness of Listeria monocytogenes. Lett Appl Microbiol. 1998;27(6):362–368.
 
48.
Pfeuffer M, Schrezenmeir J. Milk and the metabolic syndrome. Obes Rev. 2007;8(2):109–118.
 
49.
Plourde M, Destaillats F, Chouinard PY, Angers P. Conjugated alphalinolenic acid isomers in bovine milk and muscle. J Dairy Sci. 2007;90(11):5269–5275.
 
50.
Reklewska B, Bernatowicz E. Bioaktywne składniki frakcji tłuszczowej mleka [Bioactive components of fat fraction of milk]. Przegl Hod. 2002;70:1–6.
 
51.
Ruxton CH, Reed SC, Simpson MJ, Millington KJ. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet. 2004;17(5):449–459. http://dx.doi.org/10.1111/j.13....
 
52.
Siddiqui RA, Harvey KA, Zaloga GP. Modulation of enzymatic activities by n-3 polyunsaturated fatty acids to support cardiovascular health. J Nutr Biochem. 2008;19(7):417–437.
 
53.
Sieber R. Oxidised cholesterol in milk and dairy products. Int Dairy J. 2005;15(3):191–206.
 
54.
Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother. 2002;56(8):369–379.
 
55.
Sprong RC, Hulstein MF, van der Meer R. Bactericidal activities of milk lipids. Antimicrob Agents Chemother. 2001;45(4):1298–1301.
 
56.
Stanton C, Murphy J, McGrath E, Devery R. Animal feeding strategies for conjugated linoleic acid enrichment of milk. In: Sebedio JL, Christie WW, Adlof RO, eds. Advances in Conjugated Linoleic Acid Research. Champaign: AOCS Press; 2003:123–145.
 
57.
Sun CQ, O’Connor CJ, MacGibbon AK, Roberton AM. The products from lipase-catalysed hydrolysis of bovine milk fat kill Helicobacter pylori in vitro. FEMS Immunol Med Microbiol. 2007;49:235–242. http://dx.doi.org/10.1111/j.15....
 
58.
Sun CQ, O’Connor CJ, Roberton A. The antimicrobial properties of milk fat after partial hydrolysis by calf pregastric lipase. Chem Biol Interact. 2002;140(2):185–198.
 
59.
Thormar H, Isaacs CE, Brown HR, Barshatzky MR, Pessolano T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob Agents Chemother. 1987;31(1):27–31.
 
60.
Tsuji H, Kasai M, Takeuchi H, Nakamura M, Okazaki M, Kondo K. Dietary medium-chain triacylglycerols suppress accumulation of body fat in a double-blind, controlled trial in healthy men and women. J Nutr. 2001;131(11):2853–2859.
 
61.
Tsuzuki T, Tokuyama Y, Igarashi M, Miyazawa T. Tumor growth suppression by a-elostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis. 2004;25(8):1417–1425.
 
62.
Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr Rev. 2010;68(5):280–289.
 
63.
Wijendran V, Hayes KC. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu Rev Nutr. 2004;24:597–615. http://dx.doi.org/10.1146/annu....
 
64.
Willett WC. The role of dietary n-6 fatty acids in the prevention of cardiovascular disease. J Cardiovasc Med. 2007;8(suppl 1):42–45.
 
65.
Williams CM. Dietary fatty acids and human health. Ann Zootech. 2000;49(3):165–180.
 
66.
Wurtman RJ. Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism. 2008;57(suppl 2):6–10.
 
67.
Yasui Y, Hosokawa M, Kohno H, Tanaka T, Miyashita K. Troglitazone and 9cis, 11trans, 13trans-conjugated linolenic acid: comparison of their antiproliferative and apoptosis-inducing effects on different colon cancer cell lines. Chemotherapy. 2006;52(5):220–225.
 
68.
Yasui Y, Hosokawa M, Sahara T, Suzuki R, Ohgiya S, Kohno H, et al. Bitter gourd seed fatty acid rich in 9c, 11t, 13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARg in human colon cancer Caco-2 cells. Prostaglandins Leukot Essent Fatty Acids. 2005;73(2):113–119.
 
69.
Zhao G, Etherton TD, Martin KR, Gillies PJ, West SG, Kris-Etherton PM. Dietary alpha-linolenic acid inhibits proinflammatory cytokine production by peripheral blood mononuclear cells in hypercholesterolemic subjects. Am J Clin Nutr. 2007;85(2):385–391.
 
Journals System - logo
Scroll to top