Case report

Spontaneous cerebral haemorrhage in a young weight lifter: A case report and a review of current literature

Gabriele Cioni

Department of Experimental and Clinical Medicine, University of Florence, Italy

ABSTRACT

Introduction: Intracranial haemorrhage is the leading cause of death related to a head trauma in sports, and spontaneous cerebral bleeds are a very rare condition in young athletes.

Aim: We propose the case of a young weight lifter, androgenic anabolic steroids abuser, who developed a spontaneous massive intracranial haemorrhage during exertion.

Case report: The patient was a weight lifter at a competitive level, who had exercised on a regular basis for the past 5 years, assuming anabolic steroids and proteins for some years. Moreover, he referred a negative family history for spontaneous bleeding in the brain. At the visit time he presented very high blood pressure values.

Results and discussion: In this case report, the side of the cerebral lesion was typical for a hypertensive brain damage. High blood pressure values, and the alteration of sodium and potassium were compatible with hyperaldosteronism; moreover, cardiac ultrasound assessment showed a hypertrophic ventricle condition, secondary to a chronic untreated hypertension.

Conclusions: The chronic use of anabolic steroids could contribute to hypertensive complications, such as intracranial haemorrhages.
1. INTRODUCTION

The spontaneous intracranial haemorrhage is a very severe condition leading to neurological disability and associated to a high mortality rate.

It is a very rare condition in young subjects; its incidence increases after the age of 55 years, and it doubles after 80 years.\(^1\)

As reported in several studies, the intracranial haemorrhage is the leading cause of death secondary to a head trauma\(^2\) during sport activity.\(^3\)

Moreover, the dissection of cervical artery has been described in association with several sports, such as swimming\(^4\) and also following a trauma to the neck by a sea wave.\(^5\)

Alaraj et al. reported about two young athletes, abusers of anabolic androgenic steroids, who developed a spontaneous subdural haematoma.\(^6\)

2. AIM

We propose the case of a young weight lifter, abuser of androgenic anabolic steroids, who developed a spontaneous massive intracranial haemorrhage during an exertion.

3. CASE REPORT

A 30-years-old, previously healthy, man arrived to the Emergency Department for a severe headache resistant to acetaminophen, associated to nausea, vomiting and neurological abnormalities. In particular, he initially showed an aphasia and then a marked weakness of face, of the left upper limb and of the left lower limb. Neurological symptoms began during a training session. Patient denied any history of head trauma. He referred that, about a year before, he was hospitalized for a persistent headache, associated with elevated blood pressure values; on that occasion, he was positive to drug tests for the detection of anabolic steroids. According to its medical history, the patient was a weight lifter at a competitive level, who had exercised on a regular basis for the past 5 years, assuming anabolic steroids and protein integrators. Moreover, he reported a negative family history for spontaneous cerebral bleedings.

At the visit time, he weighted 105 kg and presented elevated blood pressure values (190/100 mmHg). Physical examination showed bilateral papillaedema and conjunctival haemorrhage. Regarding biochemical parameters, we found high creatinine plasma levels associated to an alteration in sodium and potassium levels. The encephalic CT showed the presence of a right-sided lenticular haemorrhage (Figure 1A).

The patient underwent to an echocardiogram, showing a hypertrophic left ventricle; the exam excluded the presence of a patent foramen ovale. Subsequently, we performed a cerebral angiography tomography of the brain excluded arteriovenous malformations or atherosclerosis of internal carotids.

![Figure 1. Several CT scans of the brain showing the progression of the haemorrhagic lesion at different times: at baseline (A), at 24 hours (B) and after 1 week (C).](image)

![Figure 2. The angiography tomography of the brain excluded arteriovenous malformations or atherosclerosis of internal carotids.](image)
CT angiography, which had excluded intracranial vascular malformations or severe atherosclerosis of internal carotids (Figure 2). The neurosurgeon excluded indications for surgery. At the 24-hours control (Figure 1B), the haemorrhage was significantly increased, showing the development of a large neurogenic oedema. These findings were associated to the progression of neurological abnormalities, with the onset of a complete paralysis of the left side. After a week, a new encephalic CT evidenced a partial reduction of the haemorrhagic area (Figure 1C).

4. RESULTS AND DISCUSSION

Although several cases of cerebral bleedings in sportsmen were reported, only Alaray et al. described two different cases of subdural haematoma in weight lifters.

According to epidemiological data, the anabolic steroid use is growing in the population of young athletes, with special reference to testosterone, nandrolone, stanozolol, or methandienone.

The chronic use of anabolic steroids is widely associated to the development of a pro-thrombotic burden, because of the increase in thrombin and plasmin levels, and because of the deficiency of protein C, predictors of acute myocardial damage and peripheral arterial disease. A case of a young man who presented potentially life-threatening arterial thromboses during anabolic steroid assumption was previously described.

Moreover, the use of anabolic steroids is associated to a significant increase in blood pressure values; this phenomenon is probably related to the sensitivity of endothelium to catecolamine levels, to the renin and aldosteron production, or to others pathways. Data from a follow-up study, as reported by Pereira dos Santos et al., showed that these effects appeared to be relatively short lived; currently there is a lack in evidence on the use of steroids in the longer term. A recent study reported the association between recreational use of anabolic steroid use and arterial hypertension and hyperlipidaemia; Severo et al. reported that changes in lipid profile, were associated to an increase in inflammatory markers and endothelial dysfunction.

In this case report, the side of the cerebral lesion was typical for a brain damage on hypertensive basis.

The elevation in blood pressure values, and the alteration of serum electrolytes, were compatible with the presence of a drug-related hyperaldosteronism; moreover, the cardiac ultrasound assessment showed a hypertrophy of left ventricle, likely secondary to a chronic untreated hypertension. A retrospective study, suggested a causative role in the pathogenesis of sudden cardiac deaths of anabolic steroids; in particular, authors identified several pathological changes within the myocardium of the left ventricle, such as interstitial and perivascular fibrosis, and fibroadipous metaplasia and perineural fibrosis. Chronic use of anabolic steroids was associated to a depression in left ventricular function; moreover, steroids-using bodybuilders presented a reduced diastolic functions of both ventricles. A case of a myocardial infarction in a young body builder was previously reported. However, long term effects of weight lifting and of the abuse of anabolic steroids on myocardial fibres and on peripheral vascularature, are still argument of research.

5. CONCLUSIONS

The weightlifting is associated with the increase in blood pressure values and with alterations on myocardial fibres, but these effects seem to be reversible. However, the chronic use of anabolic steroids could contribute to hypertensive complications, such as intracranial haemorrhages.

Conflict of interest
None declared.

References


