Original article

Propolis alcohol extract attenuates prostate specific antigen disorders and prostate necrosis induced by the cadmium toxicity in rats

Abdelkrim Berroukche, Mohamed Terras, Imane Denai

1 Laboratory of Water Resources and Environment, Biology Department, Faculty of Sciences, Dr. Tahar-Moulay University, Saida, Algeria

ARTICLE INFO

Article history
Received 14 February 2017
Accepted 30 October 2017
Available online 30 January 2018

Keywords
Cadmium
Toxicity
Propolis
Prostate specific antigen

Doi
10.29089/2017.17.00003

User license
This work is licensed under a Creative Commons Attribution – NonCommercial – NoDerivatives 4.0 International License.

ABSTRACT

Introduction: Cadmium, heavy metal, is causing toxicity. Propolis is a natural product derived from plant resins collected by honeybees. Studies reported this substance is an antioxidant and antitumor.

Aim: The aim of this study is to assess the effects of the propolis alcohol extract (PAE) against the prostate specific antigen (PSA) disorders and prostate necrosis induced by the cadmium (Cd) toxicity in rats.

Material and methods: Parameters as body weight gain, blood PSA, blood Cd²⁺ and prostate tissue examination were performed in four groups of rats as follow: GR1 (controls), GR2 (administered orally with CdSO₄ at the dose 28 mg/kg BW), GR3 (exposed to CdSO₄ then treated orally with PAE at the dose 250 mg/kg BW) and GR4 (PAE/CdSO₄ in the same conditions). Experimental period was 35 days.

Results and discussion: Cadmium toxicity induced a decrease in body weight gain and an increase in prostate gland weight, blood PSA and Cd²⁺ levels. Cd also induced prostate necrosis in which it was noted a marked irregular acini and solid parenchyma. Whereas the treatment of animals with PAE revealed that body weight gain and blood PSA are low. Propolis increased preventive effects in rat’s prostate in GR4 better than GR3. Propolis has beneficial effects and could antagonize Cd-induced prostate toxicity.

Conclusions: The results showed that propolis antagonized the harmful effects of CdSO₄. These findings showed that propolis could protect the human health through preventing the prostatic diseases.
1. INTRODUCTION

Since a long time, the toxicity of heavy metals generated an interesting debate. Metals are toxic at low dose and accumulate in living organisms. The urinary excretion of metals is less rapid than their absorption.1 Cadmium (Cd) exposes human to toxicity risks through various means such as the ingestion of contaminated food and industrial use.2 International Agency for Research on Cancer (IARC) classified Cd as a category I human carcinogen.3 However, studies suggested that the prostate is sensitive to Cd toxicity.4,5 Cd toxicity induces the oxidative stress and the synthesis of the reactive oxygen species (ROS).6 Prostate cancer is the second most diagnosed cancer of men.7,8 However, 90% of prostate cancer patients received androgen ablation therapy and chemotherapy that may decrease blood prostate specific antigen (PSA) and improve urinary symptoms. These therapies lead to adverse effects such as toxic death and strokes.7,9 Various plants and trees covering large areas in the Southwestern Algeria and are the main residence sites of honeybees (Apis mellifera L.). Majesty bees collect a natural resinous substance from buds and exudates of plants and to produce the propolis after mixed it with pollen and enzymes secreted by bees.9 Honeybees used propolis to smooth out the internal walls of the hive and as a protective barrier against their enemies.10 The local population of Southwestern Algeria used propolis as remedy against diseases. Studies revealed the anti-inflammatory, anti-oxidant and antimicrobial activities of propolis.10,11 Other works suggested the changes of chemical composition of propolis.12,13 Propolis is consisted of bioactive molecules such as: polyphenols, flavonoids and terpenoids. Its chemical composition is influenced by climatic, botanical and geographical factors.13,14 The Southwestern Algeria flora has a high biodiversity with many endemic plants. This could differentiate the composition of Algerian propolis compared to African and European propolis.13,15

2. AIM

This study aimed to assess the preventive effects of propolis alcohol extract (PAE) against Cd toxicity induced at prostate gland in rats.

3. MATERIAL AND METHODS

3.1. Chemicals

Dimethyl sulfoxide (DMSO), ethanol (80%), cadmium sulfate (CdSO4), formalin (10%), acetone, xylene, paraffin, toluene, distilled water, hymatoxylene, chloridric acid (HCl), lithium carbonate [Li2(CO3)2], ecosine were obtained from the Biology Department, Faculty of Sciences, Dr Tahar-Moulay University, Saida, Algeria.

EDTA, murine monoclonal antibodies anti-PSA, conservatives, serum calf (5%), sodium azide (0.9 g/L), wash buffer (Tris 0.05 mol/L and Tween 0.05%), sodium chloride (NaCl, 0.1 mol/L), 4-methyl-umbelliferyl phosphate (0.06 mmol/L), diethanolamine (DEA, 0.62 mol/L) were purchased from the Laboratory Bio Merieux, France. The dose of CdSO4 was 28 mg/kg BW (i.e. 1/10 of LD50, LD50 = 280 mg/kg BW).16

3.2. Preparation of PAE

Fifty grams of the resinous material of the Southwestern Algeria propolis (obtained from Rebahia area, province of Saida, located in Southwestern Algeria) was powdered and extracted with 600 mL of 80% (v/v) ethanol at 70°C for 35 minutes. After extraction, the mixture was centrifuged and the supernatant was evaporated to complete dryness at 40°C.17 The dried residue was kept at 4°C for the further use. Aqueous suspension of propolis was prepared in gum arabic suspension (1%), and orally administered to the animals for 35 days in a dose of 250 mg/kg.17

3.3. Animals

Male Wistar albino rats weighting 180–200 g were provided by the breeding unit of Pasteur Institute, Algiers. They housed under controlled conditions (25°C temperature and 12-hours lighting cycle) and received standard diet and water ad libitum during the study period. The study complies with the Guide for Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996) and approved by the Ethics Committee for Animal Experimentation at Faculty of Sciences, Saida University, Algeria.

3.4. Experimental design

Forty adult male rats were divided into four groups (10 rats in each group):

(1) GR1 – animals received distilled water and standard diet, served as normal control (NC),
(2) GR2 – animals received daily and orally CdSO4 at a dose of 28 mg / kg BW,
(3) GR3 – animals received CdSO4 at 28 mg/kg and propolis alcohol extract (PAE) at a dose of 250 mg / kg BW,
(4) GR4 – animals received PAE and CdSO4 in the same experimental conditions.

3.5. Body and prostate tissue weight

We recorded initial and final body weights of male rats to measure weight body gains. After the sacrifice of animals, prostates were dissected out, trimmed off the attached tissues and weighed individually. Then, the organ/body weight ratio was measured. Specimens of the prostates were fixed immediately in formalin for histological study.

3.6. Blood PSA assay

After 35 days, animals were anesthetized (sodium pentobarbital 40 mg/kg BW), blood samples were obtained from hearts and allowed to clot for 20 minutes in laboratory temperature and then centrifuged at 3000 r/min for 10 minutes for serum separation. Serum-PSA levels were measured by mini VIDAS automate analyzer (Bio-Merieux, France). The method was the technique of enzyme-linked fluorescent assay (ELFA): it is an enzyme immunoassay ELISA ‘sand-
wich' in heterogeneous phase. Reading of the PSA values passes through two steps to a final detection by fluorimetry. Validation of results need a quality control performed for each kit VIDAS-PSA used.

3.7. Blood Cd^{2+} assay
The spectrophotometric analysis allowed carrying out the blood Cd^{2+} assay. We collected blood samples in EDTA tubes destined for analysis by the automate instrument (Abacus 4 Hematology Analyzer, Hungary).

3.8. Histological study
The rats were dissected to isolate prostate tissues. After draining the blood, prostate samples were excised, washed with normal saline and processed separately for histological observations. Initially, the materials were fixed in 10% buffered neutral formalin for 48 h and then with bovine solution for 6 h. Paraffin sections were taken at 5 mm thickness, processed in alcohol-xylene series. For light microscopy, semithin sections of prostate tissue were stained with alum haematoxylin-eosin and examined with an Olympus BH-2 light microscope and photographed with Sony DSC-W610 digital camera (Sony Corporation Konan, Minato-ku, Tokyo, Japan).

3.9. Statistical analysis
Results were expressed as mean ± standard error of mean (SEM). Statistical analysis was performed with Sigmaplot version 11.0 softaware. ANOVA test was performed to evaluate if there were any statistically significant differences between treated and control groups.

4. RESULTS
Table 1 shows body and tissue weights and weight ratio of animals. Statistically significant body weight gain (%) was observed in animals treated with PAE according to curative and preventive methods (GR3 and GR4) which showed respectively the values of 8.49% and 9.13% compared to control and experimental groups which respectively had 31.34% and 15.36%. However, no significant difference in prostate tissue weight was recorded in the groups treated with PAE compared to control and experimental animals.

An increased prostate weight, in rats treated with CdSO_{4}, explained the higher Cd levels in the prostatic cells (9.3 ± 0.89 µg/L) compared to the controls (0.02 ± 0.01 µg/L). Whereas, in animals treated with PAE (GR3 and GR4), prostate gland weight slightly decreased which blood Cd^{2+} levels were 1.36 ± 0.29 µg/L and 0.75 ± 0.02 µg/L, respectively (Table 1). These results elucidated curative and preventive effects of PAE, which inhibited the Cd accumulation and protected the prostate tissue from this toxic heavy metal.

Blood-PSA levels were significantly higher in rats treated with CdSO_{4}, which they showed 9.15 ± 1.62 ng/mL as compared to controls (2.27 ± 0.28 ng/mL). Whereas, we noted a significant decrease of blood-PSA in rats administrated orally with PAE (GR3 and GR4). The blood PSA concentrations were 4.69 ± 0.48 ng/mL and 3.9 ± 0.24 ng/mL, respectively.

In general, the prostate of the control rats consists of fibroblasts, connective tissue fibers and layers of smooth muscle cells surrounding acini lined by columnar epithelial cells (Figure 1A). Figure 1B shows the effect of oral CdSO_{4} exposure on the incidence of proliferative lesions in the prostate. These proliferative lesions were exclusively intraepithelial hyperplasia without stromal invasion. Oval and irregular neoplastic glands associated with confluent solid zones accentuated the prostatic structures. Whereas in animals, exposed to CdSO_{4} and then treated orally with PAE (Figure 1C), it was revealed slight dysplastic modifications in the ventral prostate acinar epithelium. The control acini showed a columnar monostratified epithelium, whereas the dysplastic acini manifested an irregularly enlarged epithelial lining with occasional polyploidy formations. Prostate glands, in rats treated with PAE and then administrated with CdSO_{4}, had apparently normal cells with differentiated glandular structures and relatively little mitosis (Figure 1D).

| Table 1. Effects of oral administration of cadmium sulfate and propolis for 35 days on the body and prostate weight, blood PSA and Cd^{2+} in male rats. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | GR 1 (Controls) | GR 2 (CdSO_{4}) | GR 3 (CdSO_{4} / PAE) | GR 4 (PAE / CdSO_{4}) |
| Body weight (g) | | | | |
| Mean (± SEM) | 223.16 ± 9.87 | 167.26 ± 4.49 | 190.33 ± 2.83 | 176.65 ± 2.79 |
| Initial BW (± SEM) | 192.30 ± 8.60 | 158.32 ± 4.73 | 180.42 ± 1.39 | 168.60 ± 2.79 |
| Final BW (± SEM) | 252.58 ± 9.87 | 182.65 ± 4.49 | 195.74 ± 2.83 | 184.00 ± 4.19 |
| Body weight gain (%) | 31.34± | 15.36± | 8.49± | 9.13± |
| Prostate weight (g) | | | | |
| Mean (± SEM) | 0.24 ± 0.02 | 0.84 ± 0.04 | 0.66 ± 0.12 | 0.60 ± 0.43 |
| Prostate/body weight ratio | | | | |
| Mean (× 10^{-3}) | 1.07 | 5.02 | 3.46 | 3.39 |
| Blood-PSA (ng/mL) | | | | |
| Mean (± SEM) | 2.27 ± 0.28 | 9.15 ± 1.62± | 4.69 ± 0.48 | 3.9 ± 0.24± |
| Blood-Cd^{2+} (µg/L) | | | | |
| Mean (± SEM) | 0.02 ± 0.01 | 9.3 ± 0.89± | 1.36 ± 0.29 | 0.75 ± 0.02± |

Comments: a – statistically significant difference as compared with experimental controls (CdSO_{4}) (P < 0.05).
Studies provide evidence that propolis protects humans against cancer, and revealed that propolis has pharmacological properties. In Southwestern Algeria, propolis used by beekeepers and little is known about its biological activities. A study of Boufadi et al. (2014) reported that propolis harvested from different areas of Algeria contained various high concentrations of polyphenolic compounds known as the main active molecules exhibited free radical scavenging activity. The toxicity of Cd increased oxidative stress and affected urogenital tissues. The decrease in body weight and an increase in prostate gland weight, blood-PSA and Cd suggest the Cd-toxicity. This study also showed marked histopathology changes in the prostate tissue. Prostate and testis are the target tissues and are highly sensitive to Cd. Cd, at high dose, induces prostate epithelial cell damage associated with the irregular acini forms. Cd triggers a necrosis of stroma associated with the solid parenchyma areas. The results of this study are compared to other studies performed on the testis in which Cd causes degeneration in spermatogenic cells and the disruption of the connection.
complex between Sertoli cells.27,28 Other negative effects as high blood testosterone, an increase in blood PSA levels and prostate lesions, were recorded in rats exposed to Cd.27,28 Studies of toxicology suggested that Cd is a risk factor associated with prostate cancer.20,28,29 The cellular mechanism of Cd toxicity was already elucidated. After Cd absorption, Cd is transported by albumin and hemoglobin to reach the liver. In the liver cells, Cd conjugates to glutathione (GSH) and metallothioneins (MT). The metalloprotein complexes Cd-GSH are excreted in the bile and Cd-MT are stored in the liver or conveyed to the kidney. The Cd-MT complex, in the proximal tubules, leads to 50% excretion of Cd-MT and 50% endocytosis reabsorption. The Cd-MT is transformed by lysosomes thus releasing Cd, which interacts with cellular components, and damage them. High Cd-dose exposure may induce prostate cancer and increase blood PSA.20 Propolis becomes the subject of increasing scientific interest due to its diverse biological properties. It has been shown that propolis have antibacterial, antiviral, and antitumoral activities.21,30 This study revealed the protective effect of propolis against Cd-toxicity. Propolis, from different geographic areas and source plants, displays different chemical profiles. Main constituents of European propolis are flavonoid and phenolic acids whereas Mediterranean propolis contains diterpenic acids. This study indicates that propolis treatment showed lower blood PSA and Ca2+ levels, a decrease in prostate weight-body weight ratio and less marked prostate necrosis. Caffeic acid phenethyl ester (CAPE), a specific inhibitor of NF-jB,31 Re-This occurs by modulating the expression of growth factors such as VEGF and TNF. Studies, carried out on the antitumor activity of propolis,32 showed an antiproliferative effect against tumor lines (blood, colon, breast, prostate, lung, liver, brain, kidney). Various studies showed that propolis alcohol extract was able to modulate the expression and activity of factors involved in the carcinogenesis process. The antiproliferative effect results from a restoration of the apoptosis signal.33 Cell molecular mechanism of propolis remains unclear. Moreover, more studies are needed to investigate the correlation between propolis intake and prostate cancer incidence.

5. CONCLUSIONS

This study showed that propolis has preventive role against the Cd-toxicity. Propolis reduced accumulation of Cd in the prostate gland and prevents the increase of blood PSA. Though the molecular mechanism of the action of the propolis is unclear, propolis contributes widely to involve the scavenging of free radicals, increasing antioxidant status and metal-chelating abilities.

Conflict of interest
There is no conflict of interest for all authors.

Sources of funding
No funding was received for the work described in this article.

Acknowledgement
The authors wish to thank Dr Z. Haddi for helping biochemical analysis and for his assistance in histological techniques.

References